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Abstract 

A method of Fresnel field to far field transformation based 

on two-dimensional Fourier series expansion is presented. 

According to the method, far field can be reconstructed 

from several sections of the field in Fresnel region. 

Computer simulation and experimental verification results 

are given. Relationship to other results of antenna 

measurements theory is considered. 

1. Introduction 

Reconstruction of antenna characteristics from Fresnel 

region measurements is an important problem of the antenna 

engineering. Particularly, it is important when one has an 

anechoic chamber with test facility for far field 

measurements, but far field distance of an antenna under test 

(AUT) is larger than the length of an anechoic chamber. 

For far field reconstruction from measurements in 

Fresnel region classical methods of far-field reconstruction 

from near-field measurements can be used. It is known that 

in this case measurements can be carried out only in a 

limited angular sector [1,2]. However, it requires λ/2 spacing 

between samples, so the amount of measurements can be 

large. 

In the literature several methods of far field 

reconstruction specific to Fresnel region have been 

proposed. In these methods the spacing between samples is 

much larger than λ/2, which allows to reduce measurements 

time. 

In [3,4] a solution of three-dimensional problem based 

on pseudosampling representation of the field was found. 

The presented method is convenient for both computation 

and practical realization. A disadvantage of the method is 

that the far field can be reconstructed only in angular 

directions close to the normal of the aperture. 

In [5,6] a method based on one-dimensional Fourier 

series expansion of phase exponential was presented. The 

solution is also convenient to use (e.g. [7]), but is applicable 

only to linear antennas elongated in one direction, because 

in [5,6] only a two-dimensional problem was considered. 

However, the method is not limited only to the directions 

close to the normal of the aperture. 

In [8] a generalization of [5,6] to three-dimensional 

case based on Bessel functions expansion was considered. 

The proposed representation is less convenient in practical 

sense, because it requires to measure field in an irregular 

angular grid. 

In [9] a solution to three-dimensional problem based on 

[5,6] was proposed, which utilizes  two-dimensional Fourier 

series expansion. As opposed to Bessel functions expansion, 

this method requires to carry out measurements in a regular 

angular grid, which makes it convenient to use in practice. 

Also, for the directions close to the normal of the aperture 

the expansion presented in [9] tends to the expansion in [4]. 

Thus, a method of two-dimensional Fourier series expansion 

can be considered as a generalization of method [4] for 

reconstruction of the far field in the directions which are not 

close to the normal of the aperture. Also in [9] several issues 

concerning practical implementation of the method were 

discussed.  

Method [9] was further developed in papers [10–12], 

where measurements on non-spherical surface were 

considered [10], a Fresnel field to Fresnel field 

transformation was presented [11] and an alternative 

approach to expansion coefficients calculation was given for 

far field reconstruction from measurements at smaller 

distances [12]. 

In the current paper a method of Fresnel field to far 

field transformation based on two-dimensional Fourier 

series expansion is presented [9]. New results are given, 

such as vector form of the formulas for arbitrary point in far 

zone (in [9] only points with either small azimuth or small 

elevation were considered) and relationship of the method to 

other results of antenna measurements theory. Formulas for 

such characteristics as gain and EIRP and configuration of 

the measurement system are presented. Also the results of 

numerical simulation and experimental verification are 

given. 

2. Mathematical model 

Consider an antenna with dimensions at least several 

wavelengths. Let the antenna be in the left half-space near 

the z=0 plane (Fig.1). Then we need to choose a rectangle 

TxxTy in the z=0 plane, which must be at least as large as the 

antenna. Also let the antenna be positioned in such way that 

the center of the rectangle coincides with the origin.  

To describe the field at z>0 mathematically we'll use 

Kirchhoff integral with the Green's function, chosen to 

eliminate either the term with the derivative of the field, or 

the term with the field. Also the field at z=0 outside the 
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TxxTy rectangle is neglected. Then the electric field in an 

arbitrary point in the right half-space for which kr≫1 can be 

written in terms of the field at z=0 plane as: 
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where E is complex electric field amplitude; λ is 

wavelength, k=2π/λ; u=sinα, v=cosα sinβ, w=cosα cosβ are 

direction cosines of the direction of observation, β and α are 

azimuth and elevation of the direction of observation, r is 

the distance between the origin and observation point; U, V, 

W and R are directional cosines and length of the vector 

between integration point and observation point. 

 
Figure 1: Antenna and the reference frame. 

 

Under the condition kR≫1, the error of (1) and (2) is 

determined by the same integrals over the region 
2 \ TxxTy. 

If the rectangle TxxTy includes all points with significant 

(large enough) amplitude of the field, then the error is small. 

The further analysis will be based on (2). Analysis 

can be carried out based on (1) as well. As it will be shown, 

the result will change insignificantly in this case. 

Let us make a simplification for the case, when the 

observation point is at least as far as in the Fresnel region, 

i.e.: 

 
30.62 /r D  . (3) 

In this case (2) can be rewritten in the following way: 
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3. Field transformation 

We consider the following problem: given field 

measurements at a sphere r1 in the Fresnel region, we need 

to determine field values at a sphere r2. The problem of 

reconstructing far field corresponds to r2 →∞. 

3.1. Transformation theory 

Consider the following representation of exponential of the 

phase function from (4) for the sphere r2: 
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Let us expand (9) into Fourier series as a function of 

(x,y) at a rectangle [-Tx/2,Tx/2]x[-Ty/2,Ty/2] for fixed u and v: 
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Substitute (10) into (8) taking into account 

denotations (6) and (7): 
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where 

 / xu T  , / yv T  . (13) 

For r1 in the Fresnel region, in the vicinity of u, v the 

following inequality takes place: 
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With (14), the relation (12) can be rewritten as: 
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Note, that physical interpretation of (15) is 

representation of a spherical wave with center in (u,v,r2) as a 

linear combination of spherical waves with centers in 

(u+mΔu,v+nΔv,r1), the representation taking place at a 

rectangle TxxTy. 

Now substitute (15) into (4). After changing order of 

summation and integration, we have: 
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In sum (16) only several terms contribute 

significantly, so other terms can be dropped. This issue will 

be considered in more detail below. 

Note, that a formula analogous to (16) was originally 

obtained in [13] for a two-dimensional problem and later in 

[14] for a three-dimensional problem for the case when 

antenna is illuminated by a nonplanar wave. However in 

these publications the formulas were applied only to 

nonplanar waves of a compact range. 

Now let us consider a point u2, v2, which is located 

between nodes u1+mΔu, v1+nΔv. Let the node u1, v1 be the 

closest node of the mentioned grid's nodes to u2, v2. 

Expression (8) can be rewritten as: 
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After transformations similar to (10)-(16), we obtain: 

 2 1( ) 1
2 2 2 1 1 2 2

,2

( , , ) ( , , , )jk r r

mn

m n

r
u v r e k u v u v

r

  E  

 1 1 1( , , )u m u v n v r    E , (18) 

where 

( 2) (2)
1 1 2 21 2( , , , ) ( , , , )

1 1 2 2

1
( , , , ) r r

x y

j x y u v j x y u v

mn

x y T T

k u v u v e
T T

  



   

 2 1 2 1

22

( ( ) ( )) yx

jn yjm x
TTjk x u u y v ve e e dxdy




   . (19) 

Note, that in (18) the largest contribution into sum is 

made by the field samples near (u2,v2), because coefficients 

(19) have largest magnitudes in this area. 

Thereby, using field values in the angular grid 

u1+mΔu, v1+nΔv on a sphere in Fresnel region or far region, 

one can reconstruct field values in every points of the half-

space in Fresnel region or far region. Formulas (18),(19) can 

also be generalized for the case when r1 and/or r2 are in 

antenna near zone. This issue will be considered in the 

following publications. Also, (18),(19) can be applied at 

closer distances than indicated by (3). In [12] it was shown 

that these formulas can be applied under the following 

conditions: 
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Note, that if we base the formulas on (1) instead of 

(2), then (18) turns into: 
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The formula for coefficients in this case remains the 

same – (19). Formula (21) is also very close to (18), since 

w2/w1,mn are close to 1. Numerical simulation also shows that 

the formulas work equally well. 

The formulas can also be applied to samples equally 

spaced in azimuth-elevation coordinates. Let us show it for 

the case when either α≈0 or β≈0. In this case the phase 

doesn't have an xy term, so the two-dimensional integral (19) 

becomes a product of two one-dimensional integrals and the 

formula takes simpler form. 

First, consider α≈0 (when field is measured in 

azimuth sections). Then field values are given in a 

rectangular grid in α-β: 
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These angles correspond to the following u and v: 
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i.e. v spacing becomes smaller when azimuth increases. 

Based on (13), to have a smaller spacing for v we need to 

increase the area for integration: / cos( )y yT T  . 

Substituting it into (19) yields: 
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Using same considerations one can obtain the 

formula for β≈0 (elevation section): 
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Also note, that all formulas were written in vector 

form so far. However, one doesn't need to measure all three 

components of the field. Firstly, it is not necessary to 

measure radial component since in Fresnel region it is small 

and in addition its influence on far field is reduced due to the 

fact that in (18) radial components are almost orthogonal to 

transversal components of the far field. 
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Also, (18) can be used in scalar form separately for 

co and cross components of the field. It is also due to the 

fact that in (18) only points with close angular directions are 

used, so basis vectors of co and cross polarizations are 

almost orthogonal, regardless of which pair of co and cross 

polarizations is used. 

3.2. Analogies 

Let us draw several analogies with other results of antenna 

measurements theory. First, let us apply (18),(19) for r1 = r2. 

In this case the formulas become interpolation formulas with 

sampling functions; the coefficients tend to: 

1 2
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. (27) 

This result was achieved in [15], [16]. Note, that 

there is a small difference between formulas, which is due to 

different mathematical models of the field. We consider 

models (1) and (2) more appropriate, because in the model 

used in [15] equivalent magnetic currents on the virtual 

aperture were not taken into account. However, numerical 

simulation shows that both models work equally well. 

Note, that field interpolation formulas can be used in 

the far field reconstruction problem the following way. The 

field can be reconstructed with (18),(19) in sparse angular 

grid with spacing Δu, Δv from (13). Then interpolation 

formulas can be applied to determine field values between 

nodes of the grid. 

Also the formulas similar to those obtained in the 

previous section can be found based on field integration on a 

spherical surface. To obtain such representation one can 

apply interpolation formulas to the field on a sphere, at 

which the measurements take place. Let us show this 

approach in scalar approximation. The field on a sphere 

r2>r1 in direction u2, v2 can be represented using field on a 

sphere r1 in the Fresnel region: 
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where Δr(u,v)= |r2(u2,v2)-r1(u,v)|. 

Using formulas for field interpolation in Fresnel 

region it can be rewritten as (with u1= v1=0 for simplicity): 
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After changing the order of summation and 

integration and regrouping, the formula can be written as: 

2 1( ) 1
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Despite the difference between formulas (31) and 

(19), numerical evaluation shows that the coefficients 

coincide with high precision. Note, that a similar approach 

was used in near field to far field transformation in [17], 

where measurements on cylindrical surface were considered. 

Finally, let us show that formulas obtained in [4], are 

a special case of (18) and (19) when u1=u2≈0, v1=v2≈0, 

r2→∞. In the notations of this paper, the formulas from [4] 

can be written as: 

2( , , )s u t v r I  
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,
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m n
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where I is a vector potential, and ˆmnk  are: 
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With small u and v the vector potential I defined in [4] is 

proportional to the electric field vector E. One can see that 

formulas (25) and (26) tend to (33) when u1=u2≈0, v1=v2≈0, 

r2→∞. Note, that (25) uses azimuth and elevation angular 

variables as opposed to (33), which uses u and v; it makes 

(25) more precise for directions distant from the normal to 

the aperture. 

3.3. The amount of sections 

The kmn coefficients rapidly decrease with m and n, as can be 

seen from Fig.2. Also, field in Fresnel region decreases as 

the observation point moves away from field maximum. 

Therefore, in sums (16), (18) a finite number of terms can be 

used. Let us estimate minimum amount of terms for correct 

far field reconstruction. 

At first, consider a well-focused antenna with 

maximum along Z-axis, when central azimuth section is 

reconstructed. For field reconstruction M azimuth sections 

of the field in the Fresnel region are measured. To estimate 

Mmin let us use a stationary phase method. The integrals 

defining kmn and E(mΔu,nΔv,r1) have a stationary phase 

point under conditions |m|≤Tx
2/(2λr1) and |n|≤Ty

2/(2λr1). 

Hence, estimation for the amount of sections is [9]: 

 

2

min

1

2 1
2

xT
M

r

 
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 
. (34) 
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Figure 2. Magnitudes of kn,0 coefficients for antenna with 

size 30 λ and different r. 

 

However, the amount of n-terms shouldn't be limited 

with this estimation. It is due to contribution of the points 

with largest field amplitudes in Fresnel region to sums (16), 

(18) even for points distant from field maximum in far zone. 

Such terms have small kmn but large E(u+mΔu,v+nΔv,r1), so 

they should also be included into the summation. 

A similar effect takes place when a reconstructed 

section doesn't go through field maximum: in this case in 

addition to (34) it might be required to measure the sections 

which go through Fresnel field maximum. Also (34) cannot 

be applied to badly focused antennas (e.g. antennas with 

contoured beams), because estimation of the size of Fresnel 

field maximum made above might be incorrect in this case. 

Note, that formula (34) is an estimation, which means 

that to obtain a more precise result it might be required to 

measure several additional sections. 

3.4. Gain, EIRP and G/T calculation 

Using the presented field transformation formulas it is 

possible determine antenna gain [10]. Since Poynting vector 

can be expressed as Π=|E|2/(60π), antenna gain can be 

determined by: 

 

2 2 2

2 2 24 | ( , , ) |
( , )

60

r E u v r r
G u v

P P

 
  ,  (35) 

where P is antenna input power, r2>2D2/λ. 

Substituting (18) to (35), gives: 
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
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In (35), (36) the symbol E designates field amplitude 

at the given polarization, expressed in V/m. Since in practice 

the field is measured in non-calibrated units, one can use an 

auxiliary standard antenna with a known gain for calibration. 

It is more convenient to use a standard antenna with 

far field distance smaller than r1. In this case the AUT gain 

is: 

0 0( , )
PG

G u v
P

  

 

2

1

,0

1
( , , )mn

m n

k E u m u v n v r
E

     ,  (37) 

where P0, G0, E0 are input power, gain and measured non-

calibrated field amplitude of the standard antenna. 

If the AUT is an active antenna, one can determine its 

EIRP: 

0 0( , )PG u v PG  

 

2

1

,0

1
( , , )mn

m n

k E u m u v n v r
E

     .  (38) 

Formulas (37),(38) are for a transmitting AUT. A 

similar formula for antenna gain can be written for a 

receiving AUT (according to reciprocity principle, 

measurements in transmitting mode and in receiving mode 

are equivalent). If an auxiliary transmitting antenna is 

working with a constant power, AUT gain is: 

0( , )G u v G  

 

2

1

,0

1
( , , )mn

m n

k E u m u v n v r
E

     . (39) 

The AUT noise quality G/T  can be determined using [18]: 
2

1

2

( , ) 4 4

t t

G u v k f r

T PG

 




  

 

2

1

,

1
( , , )

2
mn

m n

k E u m u v n v r
N

     , (40) 

where k is Boltzmann constant, Δf is effective bandwidth, Pt 

and Gt are power and gain of the transmitting antenna, N  is 

noise power at AUT. 

4. Computer simulation results 

In this section the results of computer simulation are 

presented. For simulation an axisymmetrical reflector 

antenna was used, D=30λ (2D2/λ=1800λ). Using PO 

approximation several azimuth sections of Fresnel field at 

200λ and a central section of far field were calculated. 

Elevation spacing was 1.8o. Based on (18), (19) far field was 

reconstructed and compared to the calculated far field. Fig.3 

shows the results of field reconstruction using 7 sections of 

Fresnel field (according to (34)) and 11 sections, and a 

central section of the Fresnel field. For the first case the gain 

error was 0.03 dB, first side lobe level error was 0.4 dB. For 

the second case the gain error was 0.01 dB, first side lobe 

level error was 0.07 dB. 

5. Configuration of the measurement system 

To carry out measurements the AUT is adjusted to a 

positioner, which must be able to rotate in both azimuth and 

elevation (Fig.4). Measurement system configuration for 

AUT in receiving mode is shown in Fig.5. 
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Figure 3: Computer simulation results using 7 sections and 

11 sections in Fresnel region. 

 

The AUT 5 receives the signal transmitted by an 

auxiliary antenna 2. For phase measurements a reference 

channel with an auxiliary receiving antenna 3 is used. 

Amplitude and phase of the received signal are registered in 

circuit analyzer 10 and stored in computer 12 for current 

positioning angles. The measurements take place when the 

positioner gradually changes its azimuth with a fixed 

elevation. After the section is measured, positioner changes 

elevation and then the measurements continue. After that the 

data are processed using (18) and (19) or (25)/(26). 

For gain measurements the input of the mixer 7 is 

switched to a standard antenna 6 and then field amplitude in 

the maximum of standard antenna's radiation pattern is 

measured. Antenna gain is determined using (39). To 

measure gain or EIRP of a transmitting antenna the 

configuration shown in Fig.5 is modified accordingly. 

6. Experimental verification 

For verification of the method a set of experiments was 

carried out [9]. Field patterns of an offset reflector antenna 

with D=0.6 m at f=12.5 GHz (2D2/λ=30m) with linear 

polarization were measured in an anechoic chamber. The 

measurements were taken at different distances: in far region 

at 76 m and in Fresnel region. In Fresnel region several 

elevation sections of the field with azimuth spacing 2o were 

taken. Then reconstructed far field was compared to 

measured far field. 

 
Figure 4: Antenna on a positioner. 

 
Figure 5: Configuration of the measurement system 

(simplified): 1 – generator; 2 – auxiliary transmitting 

antenna; 3 – reference channel antenna; 4 – reference 

channel mixer; 5 – AUT; 6 – standard antenna; 7 – 

measurements channel mixer; 8 – positioner; 9 – 

amplification an commutation unit; 10 – vector circuit 

analyzer; 11 – controller; 12 – computer; 13 – RAM; 14 – 

anechoic chamber. 

 

In Fig.6 the results of far field reconstruction using 7 

sections measured at 4 m and using 9 sections at 2.5 m are 

given. Comparing the reconstructed and measured radiation 

patterns one can see that the quality of reconstruction is 

good and the error is less than 3 dB in the dynamic range up 

to -50 dB. Error of maximum side lobe level reconstruction 

is 1 dB and 0.3 dB for 4 m and 2.5 m measurements.  

Fig.7 shows the results of cross-polarization 

reconstruction using measurements at 7.6 m. The 

reconstructed pattern also agrees with the measured one. 

The method described in this article has been used for 

antenna measurements in an anechoic chamber in company 

Radiofizika (measurements distance up to 80 m) for several 

years. Using this method many antennas were tested, with 

far field distance of hundreds of meters and even kilometers. 

Fig.8 shows the increase of maximum size of antennas, 

which can be tested in the anechoic chamber of Radiofizika, 

that is gained when Fresnel field measurements instead of 

far field measurements are used. The lower curve 

corresponds to the standard far field criterion r>2D2/λ, the 

higher curve corresponds to criterion (20). 
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Figure 6. Experimental verification results (co-polarization). 

 
Figure 7. Experimental verification results (cross-

polarization). 

 
Figure 8. Maximum size of antennas, which can be tested in 

the anechoic chamber of Radiofizika, versus frequency. 

Fig.9 demonstrates the example of far field 

reconstruction for a reflector antenna (D=3.8m). The 

antenna adjusted on a positioner is shown in Fig.10. Far 

field distance of the antenna at f=6.25 GHz is 600m. 

Measurement distance was 76 m, i.e. 8 times less. 

 

 
Figure 9. Reconstructed far field and central section of the 

measured Fresnel field for antenna D=3.8m, f=6.25GHz. 

 

 
 

Figure 10. C-band reflector antenna (D=3.8m) on a 

positioner. 

7. Conclusions 

Fresnel field to far field transformation based on two-

dimensional Fourier series expansion was presented. The 

method was compared to other results from antenna 

measurements theory. The results of computer simulation 

and experimental verification were presented. The results 
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suggest that the method ensures good quality of far field 

reconstruction. The method has been used in practice in an 

anechoic chamber of company Radiofizika for over 12 

years for measurements of large-size antennas, and it has 

obvious advantages over outdoor far field measurements. 
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